

Competence in Technical Ceramics

Leveraging on its expertise in designing, composing, shaping and firing ceramics, Imerys Ceramics develops technical ceramics for specific businesses, such as heating and kiln construction, kiln car manufacturing, crucibles, and petrochemical.

Our large portfolio of high quality body compositions is a strong base to supply you with tailored technical kiln pieces in:

- silicon carbide
- cordierite
- mullite
- alumina

Do not hesitate to contact us with your challenges!

Each solution can be tailored to your needs thanks to our state-of-the-art design office.

HEATING INDUSTRIES & KILNS CONSTRUCTION

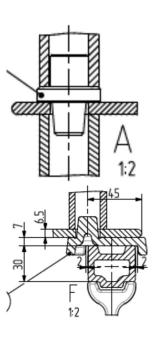
PRODUCT	TUBS (OF	BE & COE)	FLANGE TUBS FOR KILN WALL					
MATERIAL			Dense mullite	Porous mullite	Mullite Alumina	Porous mullite	Mullite Alumina	
REFERENCE			DM60	E59	KF25E	E59	QA94	
PRODCUTION PROCESS			Extr	usion	Extrusion 8	& Bonding	Casting	
MAXIMUM SERVICE TEMPERATUR	E	°C	1450	1450	1400	1450	1550	
APPARENT DENSITY		g.cm ⁻³	2.64	2.50	2.25	2.50	3.3	
APPARENT POROSITY		%	< 0,7	24	25	24	< 10	
MOR 3-POINT AT 20°C		N/mm²	> 110	38	23	38	38	
THERMAL EXPANSION AT 1000°C		10 ⁻⁶ x K ⁻¹	5.9	5.9	5.5	5.9	7.3	
THERMAL CONDUCTIVITY AT 20°C		W/mK	-	4.3	4.0	4.3	10	
HIGH TEMPERATURE CREEP RESI	STANCE		Very	good	Very good			
THERMAL CHOCK RESISTANCE			Very	good	Very good			
	Al ₂ O ₃		60	80	64	80	94	
CHEMICAL COMPOSITION	SiO ₂	%	37	18	34	18	6	
	Alkali		3	2	-	2	-	

HEATING INDUSTRIES & KILNS CONSTRUCTION

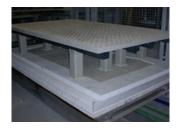
TIEATING INDUSTRIES & RIENS CONSTRUCTION										
PRODUCT			RESISTANCE HOLDERS			CUPLOCKS TO FIX FIBER OR MAINTAIN ELECTRICAL WIRE			BURNERS NOZZLES	
MATERIAL			Cordierite Mullite		Mullite Alumina		Mullite Alumina		Si-SiC	S-SiC
REFERENCE			R1E	Cormull C1E	E59P	KF25P	KF25P E59P MAT1		SC 90G	SC 100SG
PRODCUTION PROCESS			Extr	usion	Pressing		Pressing		Cas	sting
MAXIMUM SERVICE TEMPERA	TURE	°C	1300	1300	1450	1400	1450	1500	1350	1750
APPARENT DENSITY		g.cm ⁻³	2.17	2.05	2.40	2.25	2.40	2.30	3.05	3.10
APPARENT POROSITY		%	7	22	21	25	21	27	< 1	0
MOR 3-POINT AT 20°C	MOR 3-POINT AT 20°C N/mm		32	19	< 15	13	13	38	220	200
THERMAL EXPANSION AT 100	THERMAL EXPANSION AT 1000°C 10 ⁻⁶		2.9	2.8	6.0	5.5	6.0	6.5	4.0	4.5
THERMAL CONDUCTIVITY AT	20°C	W/mK	3.3	1.3	4.0	4.0	4.0	4.0	130.0	130.0
HIGH TEMPERATURE CREEP F	RESISTANCE		Very good			Very good			Excellent	
THERMAL CHOCK RESISTANC	E		Very good			Very good			Excellent	
	Al ₂ O ₃		37	38	80	64	80	86	-	-
	SiO ₂		50	50	18	34	18	12	-	-
	Alkali		-	-	2	-	2	2	-	-
-	MgO	%	7	7	-	-	-	-	-	-
	SiC		-	-	-	-	-	-	80	> 99
	Si ₃ N ₄		-	-	-	-	-	-	-	-
	Free Si		-	-	-	-	-	-	20	-

KILN CAR CONSTRUCTION

NEW CAR CONSTRUCTION										
PRODUCT	PERIMETE	R BLOCKS	SUPPORTS FOR KILN CARS AND/OR BEAMS							
MATERIAL			Cordierit	e Mullite	Co	rdierite Mul	Mullite	N-SiC		
REFERENCE			Cormull C1E	QC3	Cormull C1E	Aptakorit CME	Aptakorit HT	Aptamull 60	Aptasinit	
PRODCUTION PROCESS			Extrusion	Casting		Extrusion	•	Pressing	Casting	
MAXIMUM SERVICE TEMPERATURE		°C	1300	1300	1300	1350	1300	1400	1550	
APPARENT DENSITY		g.cm ⁻³	2.1	2.00	2.1	2.0	2.1	2.1	2.85	
APPARENT POROSITY		%	21.5	23	21.5	23	24	29	< 1	
MOR 3-POINT AT 20°C		N/mm²	19	18	19	19	19	22	190	
THERMAL EXPANSION AT 1000°C		10 ⁻⁶ x K ⁻¹	2.8	2.8	2.8	2.2	3.7	5.2	4.5	
THERMAL CONDUCTIVITY AT 20°C		W/mK	1.0	4.2	1.0	1.0	1.0	1.3	45.0	
SPECIFIC HEAT AT COEFFICIENT A	Г 20°С	J/kgK	-	1.3	-	-	900	-	980	
HIGH TEMPERATURE CREEP RESIS	TANCE		Very	good		Very good	Very good			
THERMAL CHOCK RESISTANCE			Very	good		Very good	Very good			
	Al ₂ O ₃		38	38	38	40	44	57.7	-	
	SiO ₂		50	51	50	48.5	48.1	39.7	-	
CHEMICAL COMPOSITION	MgO	%	7.0	8.0	7.0	7.5	4.0	-	-	
	SiC	1	-	-	-	-	-	-	70	
	Si ₃ N ₄	1	-	-	-	-	-	-	30	



KILN CAR CONSTRUCTION


PRODUCT	CONNECTING ELEMENTS BETWEEN SUPPORTS/BEAMS/SLABS						
MATERIAL	Cordierite	Mullite	Mullite	N-SiC			
REFERENCE			Aptakorit CM1	QC3	Thermomull 60	Aptasinit	
PRODCUTION PROCESS			Pressing	Casting	Injection moulding	Casting	
MAXIMUM SERVICE TEMPERATUR	E	°C	1350	1300	1450	1550	
APPARENT DENSITY		g.cm ⁻³	2.04	2.00	2.45	2.85	
APPARENT POROSITY		%	22	23	21.5	< 1	
MOR 3-POINT AT 20°C		N/mm²	14.7	18	82	190	
THERMAL EXPANSION AT 1000°C		10 ⁻⁶ x K ⁻¹	2.3	2.8	5.5	4.5	
THERMAL CONDUCTIVITY AT 20°C		W/mK	1.0	4.2	-	45.0	
SPECIFIC HEAT AT COEFFICIENT	AT 20°C	J/kgK	900	1.3	-	980	
HIGH TEMPERATURE CREEP RESI	STANCE		Very go	ood	Very good		
THERMAL CHOCK RESISTANCE			Very go	ood	Very good	Excellent	
	Al ₂ O ₃		38	38	71.5	-	
	SiO ₂		50	51	26.5	-	
CHEMICAL COMPOSITION	MgO	%	7.6	8.0	-	-	
CHEMICAL COMPOSITION	SiC	70	-	-	-	70	
	Si ₃ N ₄		-	-	-	30	
	Free Si		-	-	-	-	

KILN CAR CONSTRUCTION

PRODUCT			SLABS FOR KILN HEARTH					
MATERIAL			(Cordierite Mu	llite	R-SiC	N-SiC	
REFERENCE			Cormull C1E	C1	Aptakorit CM 1	SC100RG	Aptasinit	
PRODCUTION PROCESS			Extrusion	Pressing	Pressing	Casting	Casting	
MAXIMUM SERVICE TEMPERATURE		°C	1300	1300	1350	1600/2000*	1550	
APPARENT DENSITY		g.cm ⁻³	2.1	2.1	2.04	2.70	2.85	
APPARENT POROSITY		%	21.5	20	22	16	< 1	
MOR 3-POINT AT 20°C		N/mm²	19	13	14.7	84	190	
THERMAL EXPANSION AT 1000°C		10 ⁻⁶ x K ⁻¹	2.8	2.8	2.3	4.8	4.5	
THERMAL CONDUCTIVITY AT 20°C		W/mK	1.0	1.0	1.0	35	45.0	
SPECIFIC HEAT AT COEFFICIENT A	T 20°C	J/kgK	-	-	900	-	980	
HIGH TEMPERATURE CREEP RESIS	TANCE			Very good	Excellent			
THERMAL CHOCK RESISTANCE				Very good	Excellent			
	Al_2O_3		38	39	38	-	-	
	SiO ₂		50	49	50	-	-	
CHEMICAL COMPOSITION	Alkali	%	-	-	-	-	-	
CHEMICAL COMPOSITION	MgO	%	7.0	6.5	7.6	-	-	
	SiC		-	-	-	> 99	70	
	Si ₃ N ₄		-	-	-	-	30	

^{* 2000°}C under protective atmosphere (not oxidizing)

KILN CAR CONSTRUCTION

RIEN CAR CONSTRUCTION									
PRODUCT		BEAMS							
MATERIAL			Si-SiC	N-SiC	R-SiC				
REFERENCE			SC90S	Aptasinit	SC100RG				
PRODCUTION PROCESS			Extrusion	Cas	ting				
MAXIMUM SERVICE TEMPERATURE		°C	1350	1550	1600/2000*				
APPARENT DENSITY		g.cm ⁻³	3.00	2.85	2.70				
APPARENT POROSITY	NT POROSITY		< 1	< 1	16				
MOR 3-POINT AT 20°C	N/mm²	200	190	84					
THERMAL EXPANSION AT 1000°C	10 ⁻⁶ x K ⁻¹	4.0	4.5	4.8					
THERMAL CONDUCTIVITY AT 20°C		W/mK	-	45.0	35				
SPECIFIC HEAT AT COEFFICIENT A	T 20°C	J/kgK	-	980	-				
HIGH TEMPERATURE CREEP RESIS	TANCE		Excellent						
THERMAL CHOCK RESISTANCE		Excellent							
	SiC		82	70	> 99				
CHEMICAL COMPOSITION	Si_3N_4	%	-	30	-				
	Free Si		18	-	-				

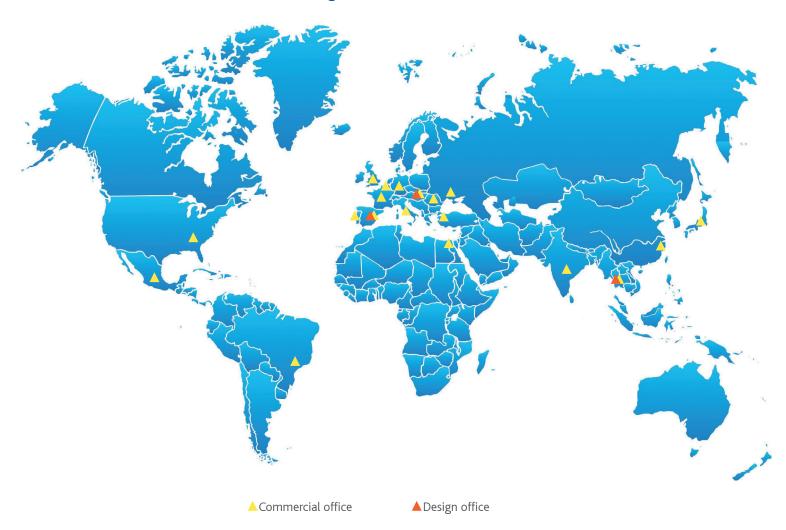
^{* 2000°}C under protective atmosphere (not oxidizing)

CRUCIBLES

INDUSTRY			GLASS	FOUNDRY AN	ID MEDICAL AP	D MEDICAL APPLICATIONS			
MATERIAL			Mullite Fused Silica	Cordierite Mullite	Mullite	Alumina			
REFERENCE			Aptasial MG	QC3	QA40	QAT4			
PRODUCTION SHAPING				Cast	ing				
MAXIMUM SERVICE TEMPERATURE		°C	1250	1300	1300	1400			
APPARENT DENSITY		g.cm ⁻³	2.11	2.00	2.00	2.50			
APPARENT POROSITY		%	22	23	20	27			
MOR 3-POINT AT 20°C	MOR 3-POINT AT 20°C		12	< 20	< 20	34			
THERMAL EXPANSION AT 1000°C		10 ⁻⁶ x K ⁻¹	2.0	2.8	5.2	6.5			
THERMAL CONDUCTIVITY AT 20°C		W/mK	-	4.2	-	4.25			
SPECIFIC HEAT AT COEFFICIENT AT	20°C	J/kgK	-	1.3	-	-			
HIGH TEMPERATURE CREEP RESIST	TANCE		Very good	Very good	Very	good			
THERMAL CHOCK RESISTANCE			Very good	Very good	Very	good			
	Al ₂ O ₃		43	38	40	84			
CHEMICAL COMPOSITION	SiO ₂	%	55	51	55	14			
	Alkali	-/0	-	-	2	-			
	MgO		-	8	-	-			

PETROCHEMICAL INDUSTRY

					,
PRODUCT	FERRULES		BALLS SUPPORT FOR CATALYST		
MATERIAL			Mullite	Alumina	Stoneware
REFERENCE			QAT4	QA94	Gresil 8A
PRODUCTION SHAPING	Cas	sting	Granulation		
MAXIMUM SERVICE TEMPERATURE	°C	1400	1550	1200	
APPARENT DENSITY		g.cm ⁻³	2.50	3.30	2.30
APPARENT POROSITY	%	27	< 10	< 5	
MOR 3-POINT at 20°C	N/mm²	34	38	-	
MODULUS OF COMPRESSION AT 20°C		N/mm131	-	-	> 110
THERMAL EXPANSION at 1000°C		10 ⁻⁶ x K ⁻¹	6	7.3	-
THERMAL CONDUCTIVITY 20°C		W/mK	4.3	10.0	-
HIGH TEMPERATURE CREEP RESISTANCE			Very good	Very good	Very good
THERMAL CHOCK RESISTANCE			Very good	Very good	Very good
CHEMICAL COMPOSITION	Al ₂ O ₃	- %	84	94	22
CHEWICAL COWIPOSITION	SiO ₂	70	14	6	69



Teams dedicated to technical ceramics manufacturing

Thanks to a global commercial structure and integrated logistics network, **Imerys Ceramics** is able to provide a high quality, cost-effective and reliable service to its customers, wherever they are in the world.

Serving customers worldwide

Distributed by

Insulating Products

202 E. Cherry Street New Castle, PA 16102 Ph (724) 656-1750 Fax (724) 656-1759 www.thermalmaxinc.com